The impact of traditional risk measurement on the pro-cyclicality

Marie Kratz
ESSEC Business School

Joint work with:
Marcel Bräutigam (ESSEC-CREAR & Sorbonne Univ. & LabEx MME-DII)
and Michel Dacorogna (PrimeRe Solutions, Switzerland)

Scientific Day, June 5, 2019
INTRODUCTION

Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a static way, based on past data.
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: risk measurements made with ‘regulatory’ risk measures, are pro-cyclical.
 - in times of crisis, they overestimate the future risk
 - they underestimate it in quiet times

→ We need to introduce dynamics in the measurement of risk, to be able to quantify this pro-cyclicality.

→ What are the factors that may explain this effect?
INTRODUCTION

Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a static way, based on past data.
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: risk measurements made with 'regulatory' risk measures, are pro-cyclical.
 - in times of crisis, they overestimate the future risk
 - they underestimate it in quiet times

→ We need to introduce dynamics in the measurement of risk, to be able to quantify this pro-cyclicality.
→ What are the factors that may explain this effect?
Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a **static way**, based on **past data**
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: **risk measurements** made with ‘regulatory’ risk measures, are **pro-cyclical**
 - in times of crisis, they overestimate the future risk
 - they underestimate it in quiet times
 - We need to introduce **dynamics** in the measurement of risk, to be able to **quantify** this pro-cyclicality
 - What are the **factors** that may explain this effect?
Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a static way, based on past data.
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: risk measurements made with ‘regulatory’ risk measures, are pro-cyclical:
 - in times of crisis, they overestimate the future risk
 - they underestimate it in quiet times

We need to introduce dynamics in the measurement of risk, to be able to quantify this pro-cyclicality.

What are the factors that may explain this effect?
Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a static way, based on past data.
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: risk measurements made with 'regulatory' risk measures, are pro-cyclical. In times of crisis, they overestimate the future risk; in quiet times, they underestimate it.

→ We need to introduce dynamics in the measurement of risk, to be able to quantify this pro-cyclicality.

→ What are the factors that may explain this effect?
INTRODUCTION

Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a static way, based on past data.
- How well does the risk assessment (capital) hold in the future?
- Accepted idea: risk measurements made with ‘regulatory’ risk measures, are pro-cyclical.
 - in times of crisis, they overestimate the future risk
 - they underestimate it in quiet times

→ We need to introduce dynamics in the measurement of risk, to be able to quantify this pro-cyclicality.

→ What are the factors that may explain this effect?
Motivation

- The capital computation based on risk estimation is usually done by financial institutions once a year and looked at in a *static way*, based on *past data*.

- How well does the risk assessment (capital) hold in the future?

- Accepted idea: *risk measurements* made with 'regulatory’ risk measures, are *pro-cyclical*.

 - in times of crisis, they overestimate the future risk.
 - they underestimate it in quiet times.

- We need to introduce *dynamics* in the measurement of risk, to be able to *quantify* this pro-cyclicality.

- What are the *factors* that may explain this effect?
Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ... analyzing the look-forward SQP ratio conditioned to the realized volatility
Two main goals

A - Quantifying the pro-cyclicality:
1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:
1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ...
 ... analyzing the look-forward SQP ratio conditioned to the realized volatility
Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a **dynamic one**

2. test the relevance and the **predictive power** of the SQP risk measure

3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a **stochastic process**, introducing **Sample Quantile Process** (SQP) as a risk measure

2. (a) Play with the random measure defining the SQP

 (b) Define a **look-forward ratio** to see how the historical estimate of the SQP predicts the risk according to the volatility state

3. Use the **realized volatility** as a marker for the **market state**, ...

 ... analyzing the look-forward **SQP ratio conditioned** to the realized volatility
Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ...
 ... analyzing the look-forward SQP ratio conditioned to the realized volatility
INTRODUCTION

Two main goals

A - **Quantifying** the pro-cyclicality:

1. **generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one**
2. **test the relevance and the predictive power of the SQP risk measure**
3. **quantify empirically pro-cyclicality**

For this:

1. Consider the measurement itself as a stochastic process, introducing **Sample Quantile Process** (SQP) as a risk measure
2. **(a) Play with the random measure defining the SQP**
 (b) Define a **look-forward ratio** to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. **Use the realized volatility** as a marker for the **market state**, ... analyzing the look-forward **SQP ratio conditioned** to the realized volatility
Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ...
 ... analyzing the look-forward SQP ratio conditioned to the realized volatility
INTRODUCTION

Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ...
 ... analyzing the look-forward SQP ratio conditioned to the realized volatility
INTRODUCTION

Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ... analyzing the look-forward SQP ratio conditioned to the realized volatility
Two main goals

A - Quantifying the pro-cyclicality:

1. generalize in a simple way the static 'regulatory' risk measure VaR to a dynamic one
2. test the relevance and the predictive power of the SQP risk measure
3. quantify empirically pro-cyclicality

For this:

1. Consider the measurement itself as a stochastic process, introducing Sample Quantile Process (SQP) as a risk measure
2. (a) Play with the random measure defining the SQP
 (b) Define a look-forward ratio to see how the historical estimate of the SQP predicts the risk according to the volatility state
3. Use the realized volatility as a marker for the market state, ...
 ... analyzing the look-forward SQP ratio conditioned to the realized volatility
B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very way risk is measured
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple iid model to show
 ... a negative correlation between the logarithm of the SQP ratio and the volatility
 ... empirically and theoretically

2. Use a simple GARCH(1,1) model
 ... to observe similar negative correlation
 ... whatever the fatness of the innovation tail
 ... empirically and theoretically
B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very way risk is measured

2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple iid model to show
 ... a negative correlation between the logarithm of the SQP ratio and the volatility
 ... empirically and theoretically

2. Use a simple GARCH(1,1) model
 ... to observe similar negative correlation
 ... whatever the fatness of the innovation tail
 ... empirically and theoretically
INTRODUCTION

B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very way risk is measured
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple iid model to show
 ... a negative correlation between the logarithm of the SQP ratio and the volatility
 ... empirically and theoretically

2. Use a simple GARCH(1,1) model
 ... to observe similar negative correlation
 ... whatever the fatness of the innovation tail
 ... empirically and theoretically
INTRODUCTION

B - **Looking for explanations**, we show that pro-cyclicality may be explained by two factors:

1. the very **way risk is measured**
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple **iid model** to show
 - ... a **negative correlation** between the logarithm of the SQP ratio and the volatility
 - ... empirically and theoretically

2. Use a simple **GARCH(1,1) model**
 - ... to observe similar **negative correlation**
 - ... **whatever the fatness** of the innovation tail
 - ... empirically and theoretically
B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very *way risk is measured*
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple *iid model* to show
 - a negative correlation between the logarithm of the SQP ratio and the volatility
 - empirically and theoretically
2. Use a simple *GARCH(1,1) model*
 - to observe similar negative correlation
 - whatever the fatness of the innovation tail
 - empirically and theoretically
B - **Looking for explanations**, we show that pro-cyclicality may be explained by two factors:

1. **the very way risk is measured**
2. **the clustering and return-to-the-mean of volatility**

For this:

1. Consider a simple **iid model** to show

 ... a **negative correlation** between the logarithm of the **SQP ratio** and the **volatility**

 ... empirically and theoretically

2. Use a simple **GARCH(1,1) model**

 ... to observe similar **negative correlation**

 ... **whatever the fatness of the innovation tail**

 ... empirically and theoretically
B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very way risk is measured
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple *iid model* to show

 ... a negative correlation between the logarithm of the *SQP ratio* and the volatility

 ... empirically and theoretically

2. Use a simple *GARCH(1,1) model*

 ... to observe similar negative correlation

 ... whatever the fatness of the innovation tail

 ... empirically and theoretically
Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very way risk is measured
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple iid model to show
 ... a negative correlation between the logarithm of the SQP ratio and the volatility
 ... empirically and theoretically

2. Use a simple GARCH(1,1) model
 ... to observe similar negative correlation
 ... whatever the fatness of the innovation tail
 ... empirically and theoretically
B - Looking for explanations, we show that pro-cyclicality may be explained by two factors:

1. the very *way risk is measured*
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple *iid model* to show

 ... a *negative correlation* between the logarithm of the *SQP ratio* and the *volatility*

 ... empirically and theoretically

2. Use a simple *GARCH(1,1) model*

 ... to observe similar *negative correlation*

 ... *whatever the fatness of the innovation tail*

 ... empirically and theoretically
B - **Looking for explanations**, we show that pro-cyclicality may be explained by two factors:

1. the very *way risk is measured*
2. the clustering and return-to-the-mean of volatility

For this:

1. Consider a simple *iid model* to show

 ... a negative correlation between the logarithm of the *SQP ratio* and the volatility

 ... empirically and theoretically

2. Use a simple *GARCH(1,1) model*

 ... to observe similar negative correlation

 ... whatever the fatness of the innovation tail

 ... empirically and theoretically
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk (VaR)**
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf\{x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha\} \overset{F_L\text{cont.}}{=} F_L^{-1}(\alpha)$$

- Practically, VaR is estimated as an **empirical quantile**: Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\widehat{\text{VaR}_\alpha}(L) = F_{n;L}^{-1}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(L_i \leq x) \geq \alpha \right\} = L(\lceil n\alpha \rceil).$$

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk** (VaR)
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

\[
\text{VaR}(\alpha) = \inf \{ x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha \} = \inf \{ x \in \mathbb{R} : \frac{1}{n} \sum_{i=1}^{n} I(L_i \leq x) \geq \alpha \} = L(\lceil n\alpha \rceil).
\]

- Practically, VaR is estimated as an **empirical quantile**: Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

\[
\hat{\text{VaR}}_\alpha(L) = F_{n; L}^{-1}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} I(L_i \leq x) \geq \alpha \right\} = L(\lceil n\alpha \rceil).
\]

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk** (VaR)
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf\{x \in \mathbb{R} : P(L \leq x) \geq \alpha\} \overset{F_L \text{ cont.}}{=} F_L^{-1}(\alpha)$$

- Practically, VaR is estimated as an **empirical quantile**: Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\widehat{\text{VaR}}_{\alpha}(L) = F_{n;L}^{-1}(\alpha) = \inf\left\{x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(L_i \leq x) \geq \alpha\right\} = L(\lceil n\alpha \rceil).$$

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk** (VaR)
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

\[
\text{VaR}(\alpha) = \inf\{x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha\} \underset{\text{strict.}}{=} F_L^{-1}(\alpha)
\]

- Practically, VaR is estimated as an **empirical quantile**: Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

\[
\hat{\text{VaR}}_{\alpha}(L) = F_{n;L}^{-1}(\alpha) = \inf\left\{x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(L_i \leq x) \geq \alpha\right\} = L(\lceil n\alpha \rceil).
\]

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk (VaR)**
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf \{ x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha \} = F_L^{-1}(\alpha)$$

- Practically, VaR is estimated as an **empirical quantile**:
 Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\hat{\text{VaR}}_\alpha(L) = F_{n;L}^{-1}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} I(L_i \leq x) \geq \alpha \right\} = L(\lceil n\alpha \rceil).$$

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk** (VaR)
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf\{x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha\} = F_L^{-1}(\alpha)$$

- Practically, VaR is estimated as an **empirical quantile**:
 Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\hat{\text{VaR}}_\alpha(L) = F_{n;L}^{-1}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(L_i \leq x) \geq \alpha \right\} = L(\lceil n\alpha \rceil).$$

- Known pro-cyclicality of risk estimation
Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk (VaR)**
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf\{x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha\} \overset{\text{cont.}}{=} F^{-1}_L(\alpha)$$

- Practically, VaR is estimated as an **empirical quantile**:
 Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\hat{\text{VaR}}_\alpha(L) = F^{-1}_{n;L}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(L_i \leq x) \geq \alpha \right\} = L([n\alpha]) .$$

- Known pro-cyclicality of risk estimation
INTRODUCTION

Risk Measure: VaR

- In financial markets, most popular risk measure: **Value-at-Risk** (VaR)
- Given a loss random variable L (with cdf F_L), level $\alpha \in (0, 1)$

$$\text{VaR}(\alpha) = \inf \{ x \in \mathbb{R} : \mathbb{P}(L \leq x) \geq \alpha \}$$

- Practically, VaR is estimated as an **empirical quantile**:
 Given a sample of n historical losses (L_1, \cdots, L_n), $\alpha \in (0, 1)$,

$$\hat{\text{VaR}}_{\alpha}(L) = F_{n;L}^{-1}(\alpha) = \inf \left\{ x : \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(L_i \leq x) \geq \alpha \right\} = L(\lceil n\alpha \rceil).$$

- Known pro-cyclicality of risk estimation

![S&P500 Time Series](image)
Dynamic extension of VaR: SQP

- **Sample Quantile Process (SQP) (Miura (92), Akahori (95), Embrechts & Samorodnitsky (95))**: Given $L = (L_t, t \geq 0)$, $\alpha \in (0, 1)$, a fixed time frame T, and a random measure μ on \mathbb{R}^+, the SQP is defined at time t as

$$Q_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{\int_{t-T}^{t} \mu(s)ds} \int_{t-T}^{t} \mathbb{I}(L_s \leq x) \mu(s)ds \geq \alpha \right\}.$$

- **Ex**: $\mu = \text{Lebesgue measure}$:
 the VaR process $(Q_{T,\alpha,t}(L))_t$ (with a rolling window T)

$$Q_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \int_{t-T}^{t} \mathbb{I}(L_s \leq x)ds \geq \alpha \right\}.$$
Dynamic extension of VaR: SQP

- **Sample Quantile Process** (SQP) (Miura (92), Akahori (95), Embrechts & Samorodnitsky (95)): Given $L = (L_t, t \geq 0)$, $\alpha \in (0, 1)$, a fixed time frame T, and a random measure μ on \mathbb{R}^+, the SQP is defined at time t as

$$Q_{T, \alpha, t}(L) = \inf \left\{ x : \frac{1}{\int_{t-T}^{t} \mu(s)ds} \int_{t-T}^{t} \mathbb{I}(L_s \leq x) \mu(s)ds \geq \alpha \right\}.$$

- **Ex:** $\mu =$ Lebesgue measure: the VaR process $(Q_{T, \alpha, t}(L))_t$ (with a rolling window T)

$$Q_{T, \alpha, t}(L) = \inf \left\{ x : \frac{1}{T} \int_{t-T}^{t} \mathbb{I}(L_s \leq x)ds \geq \alpha \right\}.$$
Dynamic extension of VaR: SQP

- **Sample Quantile Process (SQP)** (Miura (92), Akahori (95), Embrechts & Samorodnitsky (95)): Given $L = (L_t, t \geq 0)$, $\alpha \in (0, 1)$, a fixed time frame T, and a random measure μ on \mathbb{R}^+, the SQP is defined at time t as

$$Q_{T, \alpha, t}(L) = \inf \left\{ x : \frac{1}{\int_{t-T}^{t} \mu(s) ds} \int_{t-T}^{t} \mathbb{1}(L_s \leq x) \mu(s) ds \geq \alpha \right\}.$$

- **Ex:** $\mu = \text{Lebesgue measure}$:
 the VaR process $(Q_{T, \alpha, t}(L))_t$ (with a rolling window T)

$$Q_{T, \alpha, t}(L) = \inf \left\{ x : \frac{1}{T} \int_{t-T}^{t} \mathbb{1}(L_s \leq x) ds \geq \alpha \right\}$$
Setup 1: Empirical Study

- Data: **11 stock indices**, daily log-returns from Jan. 1987 to Sept. 2018
- Dynamic ‘rolling-window’ VaR: \((Q_{T,\alpha,t}(L))_t\) denoted \((\hat{\text{VaR}}_{T,\alpha,t}(L))_t\), with empirical estimator

\[
\hat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} I(L_i \leq x) \geq \alpha \right\}
\]

- For simplicity: \(T = 1\) year, \(\alpha = 95\%\), monthly rolling-window \(t\)
Setup 1: Empirical Study

- **Data:** 11 stock indices, daily log-returns from Jan. 1987 to Sept. 2018

- Dynamic ‘rolling-window’ VaR: \((Q_{T,\alpha,t}(L))_t \) denoted \((\text{VaR}_{T,\alpha,t}(L))_t \), with empirical estimator

\[
\hat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} I(L_i \leq x) \geq \alpha \right\}
\]

- For simplicity: \(T = 1 \) year, \(\alpha = 95\% \), monthly rolling-window \(t \)
Setup 1: Empirical Study

- Data: **11 stock indices**, daily log-returns from Jan. 1987 to Sept. 2018

- Dynamic ‘rolling-window’ VaR: \((Q_{T,\alpha,t}(L))_t \) denoted \((\text{VaR}_{T,\alpha,t}(L))_t \), with empirical estimator

\[
\widehat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} \mathbb{I}(L_i \leq x) \geq \alpha \right\}
\]

- For simplicity: \(T = 1y \), \(\alpha = 95\% \), monthly rolling-window \(t \)
Setup 1: Empirical Study

- Data: **11 stock indices**, daily log-returns from Jan. 1987 to Sept. 2018
- Dynamic ‘rolling-window’ VaR: \((Q_{T,\alpha,t}(L))_t\) denoted \((\text{VaR}_{T,\alpha,t}(L))_t\), with empirical estimator

\[
\widehat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} \mathbb{I}(L_i \leq x) \geq \alpha \right\}
\]

- For simplicity: \(T = 1y, \alpha = 95\%\), monthly rolling-window \(t\)
Setup 1: Empirical Study

- Data: **11 stock indices**, daily log-returns from Jan. 1987 to Sept. 2018
- Dynamic ‘rolling-window’ VaR: $(Q_{T,\alpha,t}(L))_t$ denoted $(\text{VaR}_{T,\alpha,t}(L))_t$, with empirical estimator

$$\widehat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} \mathbb{1}(L_i \leq x) \geq \alpha \right\}$$

- For simplicity: $T = 1y, \alpha = 95\%$, monthly rolling-window t
Setup 1: Empirical Study

- Data: **11 stock indices**, daily log-returns from Jan. 1987 to Sept. 2018

- Dynamic ‘rolling-window’ VaR: \(Q_{T,\alpha,t}(L) \) denoted \(\text{VaR}_{T,\alpha,t}(L) \), with empirical estimator

\[
\hat{\text{VaR}}_{T,\alpha,t}(L) = \inf \left\{ x : \frac{1}{T} \sum_{i \in [t-T,t)} I(L_i \leq x) \geq \alpha \right\}
\]

- For simplicity: \(T = 1y \), \(\alpha = 95\% \), monthly rolling-window \(t \)
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR’s

\[R_{t,\alpha} = \frac{\hat{VaR}_{1,\alpha,t+1y}}{\hat{VaR}_{T,\alpha,t}} \]

\(\hat{VaR}_{T,\alpha,t} \) used as a predictor of the risk 1 year later \((t + 1y) \)

\(\hat{VaR}_{1,\alpha,t+1y} \): estimated realized risk at time \(t + 1y \) (a posteriori)

(empirical VaR on 1 year, as asked by regulators)

- \(R_{t,\alpha} \approx 1 \): correctly assess the ‘future risk’
- \(R_{t,\alpha} > 1 \): under-estimation of the ‘future risk’
- \(R_{t,\alpha} < 1 \): over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR's

\[R_{t,\alpha} = \frac{\hat{VaR}_{1,\alpha,t+1y}}{\hat{VaR}_{T,\alpha,t}} \]

\(\hat{VaR}_{T,\alpha,t} \) used as a predictor of the risk 1 year later \((t + 1y)\)

\(\hat{VaR}_{1,\alpha,t+1y} \): estimated realized risk at time \(t + 1y \) (a posteriori)

(empirical VaR on 1 year, as asked by regulators)

- \(R_{t,\alpha} \approx 1 \): correctly assess the ‘future risk’
- \(R_{t,\alpha} > 1 \): under-estimation of the ‘future risk’
- \(R_{t,\alpha} < 1 \): over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR’s

\[R_{t,\alpha} = \frac{\hat{VaR}_{T,\alpha,t}}{\hat{VaR}_{1,\alpha,t+1y}} \]

\(\hat{VaR}_{T,\alpha,t} \) used as a predictor of the risk 1 year later \((t + 1y)\)

\(\hat{VaR}_{1,\alpha,t+1y} \): estimated realized risk at time \(t + 1y \) (a posteriori)

(empirical VaR on 1 year, as asked by regulators)

- \(R_{t,\alpha} \approx 1 \): correctly assess the ‘future risk’
- \(R_{t,\alpha} > 1 \): under-estimation of the ‘future risk’
- \(R_{t,\alpha} < 1 \): over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR’s

\[R_{t,\alpha} = \frac{\hat{VaR}_{1,\alpha,t+1y}}{\hat{VaR}_{T,\alpha,t}} \]

- $\hat{VaR}_{T,\alpha,t}$ used as a predictor of the risk 1 year later ($t + 1y$)
- $\hat{VaR}_{1,\alpha,t+1y}$: estimated realized risk at time $t + 1y$ (a posteriori)
 (empirical VaR on 1 year, as asked by regulators)

- $R_{t,\alpha} \approx 1$: correctly assess the ‘future risk’
- $R_{t,\alpha} > 1$: under-estimation of the ‘future risk’
- $R_{t,\alpha} < 1$: over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR’s

\[R_{t,\alpha} = \frac{\hat{VaR}_{1,\alpha, t+1y}}{VaR_{T,\alpha, t}} \] with

\(\hat{VaR}_{T,\alpha, t} \) used as a predictor of the risk 1 year later (\(t + 1y \))
\(\hat{VaR}_{1,\alpha, t+1y} \): estimated realized risk at time \(t + 1y \) (a posteriori)
(empirical VaR on 1 year, as asked by regulators)

- \(R_{t,\alpha} \approx 1 \): correctly assess the ‘future risk’
- \(R_{t,\alpha} > 1 \): under-estimation of the ‘future risk’
- \(R_{t,\alpha} < 1 \): over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a new quantity: look-forward ratio of VaR's

\[R_{t,\alpha} = \frac{\widehat{VaR}_{1,\alpha,t+1y}}{\widehat{VaR}_{T,\alpha,t}} \quad \text{with} \]

\[\widehat{VaR}_{T,\alpha,t} \text{ used as a predictor of the risk 1 year later } (t + 1y) \]
\[\widehat{VaR}_{1,\alpha,t+1y} \text{: estimated realized risk at time } t + 1y \text{ (a posteriori)} \]
\[\text{(empirical VaR on 1 year, as asked by regulators)} \]

- \[R_{t,\alpha} \approx 1 \]: correctly assess the ‘future risk’
- \[R_{t,\alpha} > 1 \]: under-estimation of the ‘future risk’
- \[R_{t,\alpha} < 1 \]: over-estimation of the ‘future risk’
Setup 2 - Quality of risk prediction

- Introduce a **new quantity**: look-forward ratio of VaR’s

\[R_{t,\alpha} = \frac{\hat{VaR}_{1,\alpha,t+1y}}{\hat{VaR}_{T,\alpha,t}} \]

- \(\hat{VaR}_{T,\alpha,t} \) used as a predictor of the risk 1 year later \((t + 1y)\)
- \(\hat{VaR}_{1,\alpha,t+1y} \): estimated **realized** risk at time \(t + 1y \) **(a posteriori)**
 (empirical VaR on 1 year, as asked by regulators)

- \(R_{t,\alpha} \approx 1 \): correctly assess the ‘future risk’
- \(R_{t,\alpha} > 1 \): under-estimation of the ‘future risk’
- \(R_{t,\alpha} < 1 \): over-estimation of the ‘future risk’
Understanding the Dynamic Behavior

- Use a measure of annualized realized volatility as a proxy for market states

\[v_{k,n}(t - 1) := \sqrt{252} \times \left\{ \frac{1}{n-1} \sum_{i=t-n}^{t-1} \left| X_i - \frac{1}{n} \sum_{i=t-n}^{t-1} X_i \right|^k \right\}^{1/k}, \]

- Reasonable proxy to discriminate between quiet and crisis periods
- Condition the ratios on the volatility
Understanding the Dynamic Behavior

- Use a measure of annualized **realized volatility** as a proxy for **market states**

\[
v_{k,n}(t - 1) := \sqrt{252} \times \left\{ \frac{1}{n - 1} \sum_{i=t-n}^{t-1} \left| X_i - \frac{1}{n} \sum_{i=t-n}^{t-1} X_i \right|^k \right\}^{1/k},
\]

- **Reasonable proxy** to discriminate between quiet and crisis periods

- **Condition** the ratios on the volatility
Understanding the Dynamic Behavior

- Use a measure of annualized realized volatility as a proxy for market states

\[v_{k,n}(t - 1) := \sqrt{252} \times \left\{ \frac{1}{n-1} \sum_{i=t-n}^{t-1} \left| X_i - \frac{1}{n} \sum_{i=t-n}^{t-1} X_i \right|^k \right\}^{1/k}, \]

- Reasonable proxy to discriminate between quiet and crisis periods

- Condition the ratios on the volatility
Relation between Volatility and VaR Ratios

\[\log(R_{T,\alpha,t}) \text{ negatively correlated} \] with annualized realized volatility:

<table>
<thead>
<tr>
<th>Volatility year t</th>
<th>SQP ratio</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Volatility</td>
<td>High Ratio > 1</td>
<td>Underestimation of Risk</td>
</tr>
<tr>
<td>High Volatility</td>
<td>Low Ratio < 1</td>
<td>Overestimation of Risk</td>
</tr>
</tbody>
</table>
Relation between Volatility and VaR Ratios

\[\log\left(R_{T,\alpha,t}\right) \text{ negatively correlated} \text{ with annualized realized volatility:} \]

<table>
<thead>
<tr>
<th>Volatility year (t)</th>
<th>SQP ratio</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Volatility</td>
<td>High Ratio > 1</td>
<td>Underestimation of Risk</td>
</tr>
<tr>
<td>High Volatility</td>
<td>Low Ratio < 1</td>
<td>Overestimation of Risk</td>
</tr>
</tbody>
</table>
Relation between Volatility and VaR Ratios

- \(\log(R_{T,\alpha,t}) \) **negatively correlated** with annualized realized volatility:

<table>
<thead>
<tr>
<th>Volatility year (t)</th>
<th>SQP ratio</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Volatility</td>
<td>High Ratio > 1</td>
<td>Underestimation of Risk</td>
</tr>
<tr>
<td>High Volatility</td>
<td>Low Ratio < 1</td>
<td>Overestimation of Risk</td>
</tr>
</tbody>
</table>
Relation between Volatility and VaR Ratios

\[\log(R_{T,\alpha,t}) \] negatively correlated with annualized realized volatility:

<table>
<thead>
<tr>
<th>Volatility year (t)</th>
<th>SQP ratio</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Volatility</td>
<td>High Ratio > 1</td>
<td>Underestimation of Risk</td>
</tr>
<tr>
<td>High Volatility</td>
<td>Low Ratio < 1</td>
<td>Overestimation of Risk</td>
</tr>
</tbody>
</table>
Two factors that explain the pro-cyclicality

We are estimating empirically

\[
\text{Cor} \left(\log \left(\frac{\hat{VaR}_{t+1}}{VaR_t} \right), \hat{\sigma}_t \right) \quad \text{and} \quad \text{Cor} \left(\log \left(\frac{\hat{VaR}_{t+1}}{VaR_t} \right), \hat{\theta}_t \right)
\]

- for an iid model
- for a GARCH(1,1) model
- using different underlying distributions

<table>
<thead>
<tr>
<th>(\alpha = 95%)</th>
<th>Model: Data (average)</th>
<th>GARCH</th>
<th>iid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (log-ratios) with (\hat{\sigma}_t)</td>
<td>-0.54</td>
<td>-0.63</td>
<td>(-0.19)(t3)/-0.40 (N)</td>
</tr>
<tr>
<td>Correlation (log-ratios) with (\hat{\theta}_t)</td>
<td>-0.51</td>
<td>-0.63</td>
<td>-0.35 (t3)/-0.34 (N)</td>
</tr>
</tbody>
</table>

- Part of the pro-cyclicality would be intrinsically due to historic risk estimation?
- Part would be due to clustering and return to the mean of volatility?
Two factors that explain the pro-cyclicality

We are estimating empirically

\[\text{Cor} \left(\log \left| \frac{\hat{\text{VaR}}_{t+1y}}{\hat{\text{VaR}}_t} \right|, \hat{\sigma}_t \right) \text{ and Cor} \left(\log \left| \frac{\hat{\text{VaR}}_{t+1y}}{\hat{\text{VaR}}_t} \right|, \hat{\theta}_t \right) \]

- for an iid model
- for a GARCH(1,1) model
- using different underlying distributions

<table>
<thead>
<tr>
<th>(\alpha = 95%)</th>
<th>Model: Data (average)</th>
<th>GARCH</th>
<th>iid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (log-ratios) with (\hat{\sigma}_t)</td>
<td>-0.54</td>
<td>-0.63</td>
<td>(-0.19)(t3)/-0.40 (N)</td>
</tr>
<tr>
<td>Correlation (log-ratios) with (\hat{\theta}_t)</td>
<td>-0.51</td>
<td>-0.63</td>
<td>-0.35 (t3)/-0.34 (N)</td>
</tr>
</tbody>
</table>

Part of the pro-cyclicality would be intrinsically due to historic risk estimation?

Part would be due to clustering and return to the mean of volatility?
Two factors that explain the pro-cyclicality

We are estimating empirically

$$Cor \left(\log \left| \frac{\hat{VaR}_{t+1}}{\hat{VaR}_t} \right|, \hat{\sigma}_t \right) \text{ and } Cor \left(\log \left| \frac{\hat{VaR}_{t+1}}{\hat{VaR}_t} \right|, \hat{\theta}_t \right)$$

- for an iid model
- for a GARCH(1,1) model
- using different underlying distributions

<table>
<thead>
<tr>
<th>$\alpha = 95%$</th>
<th>Model:</th>
<th>Data (average)</th>
<th>GARCH</th>
<th>iid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (log-ratios) with $\hat{\sigma}_t$</td>
<td>-0.54</td>
<td>-0.63</td>
<td>(-0.19)(t3)/-0.40 (N)</td>
<td></td>
</tr>
<tr>
<td>Correlation (log-ratios) with $\hat{\theta}_t$</td>
<td>-0.51</td>
<td>-0.63</td>
<td>-0.35 (t3)/-0.34 (N)</td>
<td></td>
</tr>
</tbody>
</table>

- Part of the pro-cyclicality would be intrinsically due to historic risk estimation?
- Part would be due to clustering and return to the mean of volatility?
Two factors that explain the pro-cyclicality

We are estimating empirically

\[\text{Cor} \left(\log \left| \frac{\hat{VaR}_{t+1y}}{\hat{VaR}_t} \right|, \hat{\sigma}_t \right) \quad \text{and} \quad \text{Cor} \left(\log \left| \frac{\hat{VaR}_{t+1y}}{\hat{VaR}_t} \right|, \hat{\theta}_t \right) \]

- for an iid model
- for a GARCH(1,1) model
- using different underlying distributions

<table>
<thead>
<tr>
<th>(\alpha = 95%)</th>
<th>Model:</th>
<th>Data (average)</th>
<th>GARCH</th>
<th>iid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (log-ratios) with (\hat{\sigma}_t)</td>
<td>-0.54</td>
<td>-0.63</td>
<td>(-0.19)(t3)/-0.40 (N)</td>
<td></td>
</tr>
<tr>
<td>Correlation (log-ratios) with (\hat{\theta}_t)</td>
<td>-0.51</td>
<td>-0.63</td>
<td>-0.35 (t3)/-0.34 (N)</td>
<td></td>
</tr>
</tbody>
</table>

- Part of the pro-cyclicality would be intrinsically due to historic risk estimation?
- Part would be due to clustering and return to the mean of volatility?
A first factor: the way risk is measured

\(X \) parent rv of an iid sample with mean \(\mu \), variance \(\sigma^2 \), quantile \(q_X(p), p \in (0, 1) \)

\[m(X, r) = \mathbb{E}[|X - \mu|^r] \] measure of dispersion. Take \(r = 1, 2 \):

\(m(X, 2) = \sigma^2 \) and \(m(X, 1) = \) Mean Absolute Deviation (MAD).

Consider their empirical estimators

\[
\hat{m}(X, n, r) = \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{X}_n|^r
\]

(\(\hat{m}(X, n, 2) = \hat{\sigma}_n^2 \), \(\hat{m}(X, n, 1) = \hat{\theta}_n \)) and the sample quantile \(q_n(p) = X([np]) \)

\(h_i \) continuous real functions with existing derivatives \(h'_i \)

Theorem: Bivariate CLT. Under some conditions,

\[
\sqrt{n} \begin{pmatrix}
 h_1(q_n(p)) - h_1(q_X(p)) \\
 h_2(\hat{m}(X, n, r)) - h_2(m(X, r))
\end{pmatrix} \xrightarrow{d} \mathcal{N}(0, \Sigma^{(r)})
\]

where the asymptotic covariance matrix \(\Sigma^{(r)} = (\Sigma_{ij}^{(r)}, 1 \leq i, j \leq 2) \) is well defined.

For instance, in the Gaussian case (and \(r = 2 \)):

\[
\lim_{n \to \infty} \text{Cor} \left(\log \left| \frac{q_{n,t+1}(p)}{q_{n,t}(p)} \right|, \hat{\sigma}_n \right) = -\frac{1}{\sqrt{2}} \frac{\phi(\Phi^{-1}(p)) |\Phi^{-1}(p)|}{\sqrt{2}p(1-p)}.
\]
A first factor: the way risk is measured

X parent rv of an iid sample with mean μ, variance σ^2, quantile $q_X(p)$, $p \in (0, 1)$

$m(X, r) = \mathbb{E}[|X - \mu|^r]$: measure of dispersion. Take $r = 1, 2$:

$m(X, 2) = \sigma^2$ and $m(X, 1) = \text{Mean Absolute Deviation (MAD)}$.

Consider their empirical estimators $\hat{m}(X, n, r) = \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{X}_n|^r$

$(\hat{m}(X, n, 2) = \hat{\sigma}_n^2, \hat{m}(X, n, 1) = \hat{\theta}_n)$ and the sample quantile $q_n(p) = X(\lceil np \rceil)$

h_i continuous real functions with existing derivatives h_i'

Theorem: Bivariate CLT. Under some conditions,

$$
\sqrt{n} \left(\begin{array}{c}
 h_1(q_n(p)) - h_1(q_X(p)) \\
 h_2(\hat{m}(X, n, r)) - h_2(m(X, r))
\end{array} \right) \xrightarrow{d} N(0, \Sigma^{(r)})
$$

where the asymptotic covariance matrix $\Sigma^{(r)} = (\Sigma_{i,j}^{(r)}, 1 \leq i, j \leq 2)$ is well defined.

For instance, in the Gaussian case (and $r = 2$):

$$
\lim_{n \to \infty} \text{Cor} \left(\log \left| \frac{q_{n,t+1}(p)}{q_{n,t}(p)} \right|, \hat{\sigma}_n \right) = -\frac{1}{\sqrt{2}} \phi(\Phi^{-1}(p))|\Phi^{-1}(p)| \sqrt{2p(1 - p)}.
$$
A first factor: the way risk is measured

X parent rv of an iid sample with mean μ, variance σ^2, quantile $q_X(p)$, $p \in (0, 1)$

$m(X, r) = \mathbb{E}[|X - \mu|^r]$: measure of dispersion. Take $r = 1, 2$:
$m(X, 2) = \sigma^2$ and $m(X, 1) =$ Mean Absolute Deviation (MAD).

Consider their empirical estimators $\hat{m}(X, n, r) = \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{X}_n|^r$
$(\hat{m}(X, n, 2) = \hat{\sigma}^2_n, \hat{m}(X, n, 1) = \hat{\theta}_n)$ and the sample quantile $q_n(p) = X(\lceil np \rceil)$

h_i continuous real functions with existing derivatives h'_i

Theorem: Bivariate CLT. Under some conditions,

$$\sqrt{n} \left(\begin{array}{c}
 h_1(q_n(p)) - h_1(q_X(p)) \\
 h_2(\hat{m}(X, n, r)) - h_2(m(X, r)) \\
\end{array} \right) \xrightarrow{d} \mathcal{N}(0, \Sigma^{(r)}) ,$$

where the asymptotic covariance matrix $\Sigma^{(r)} = (\Sigma_{ij}^{(r)}, 1 \leq i, j \leq 2)$ is well defined.

For instance, in the Gaussian case (and $r = 2$):

$$\lim_{n \to \infty} \text{Cor} \left(\log |\frac{q_{n,t+1}(p)}{q_n,t(p)}|, \hat{\sigma}_n \right) = -\frac{1}{\sqrt{2}} \frac{\phi(\Phi^{-1}(p))|\Phi^{-1}(p)|}{\sqrt{2p(1-p)}}.$$
A first factor: the way risk is measured

X parent rv of an iid sample with mean μ, variance σ^2, quantile $q_X(p)$, $p \in (0, 1)$

$m(X, r) = \mathbb{E}[|X - \mu|^r]$: measure of dispersion. Take $r = 1, 2$:

$m(X, 2) = \sigma^2$ and $m(X, 1)=$ Mean Absolute Deviation (MAD).

Consider their empirical estimators

$m(X, n, r) = \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{X}_n|^r$

$(\hat{m}(X, n, 2) = \hat{\sigma}_n^2, \hat{m}(X, n, 1) = \hat{\theta}_n)$ and the sample quantile $q_n(p) = X(\lfloor np \rfloor)$

h_i continuous real functions with existing derivatives h'_i

Theorem: Bivariate CLT. Under some conditions,

$$
\sqrt{n} \left(\begin{array}{c}
 h_1(q_n(p)) - h_1(q_X(p)) \\
 h_2(\hat{m}(X, n, r)) - h_2(m(X, r))
\end{array} \right) \xrightarrow{d} \mathcal{N}(0, \Sigma^{(r)}),
$$

where the asymptotic covariance matrix $\Sigma^{(r)} = (\Sigma^{(r)}_{ij}, 1 \leq i, j \leq 2)$ is well defined.

For instance, in the Gaussian case (and $r = 2$):

$$
\lim_{n \to \infty} \text{Cor} \left(\log \left| \frac{q_{n,t+1}(p)}{q_{n,t}(p)} \right|, \hat{\sigma}_n \right) = -\frac{1}{\sqrt{2}} \frac{\phi(\Phi^{-1}(p))|\Phi^{-1}(p)|}{\sqrt{2p(1-p)}}.
$$
A first factor: the way risk is measured

\(X \) parent \(rv \) of an iid sample with mean \(\mu \), variance \(\sigma^2 \), quantile \(q_X(p), p \in (0, 1) \)

\[
m(X, r) = \mathbb{E}[|X - \mu|^r]: \text{ measure of dispersion. Take } r = 1, 2:\n\]

\(m(X, 2) = \sigma^2 \) and \(m(X, 1) = \text{ Mean Absolute Deviation (MAD)} \).

Consider their empirical estimators \(\hat{m}(X, n, r) = \frac{1}{n} \sum_{i=1}^{n} |X_i - \bar{X}_n|^r \)

\((\hat{m}(X, n, 2) = \hat{\sigma}^2_n, \hat{m}(X, n, 1) = \hat{\theta}_n) \) and the sample quantile \(q_n(p) = X_{\lfloor np \rfloor} \)

\(h_i \) continuous real functions with existing derivatives \(h'_i \)

Theorem: Bivariate CLT. Under some conditions, where the asymptotic covariance matrix \(\Sigma^{(r)} = (\Sigma^{(r)}_{i,j}, 1 \leq i, j \leq 2) \) is well defined.

For instance, in the Gaussian case (and \(r = 2 \)):

\[
\lim_{n \to \infty} \text{Cor} \left(\log \left| \frac{q_{n,t+1}(p)}{q_{n,t}(p)} \right|, \hat{\sigma}_n \right) = -\frac{1}{\sqrt{2}} \frac{\phi(\Phi^{-1}(p))|\Phi^{-1}(p)|}{\sqrt{2p(1-p)}}.
\]
Conditions

Different conditions on X depending on the quantile estimator and the choice of measure of dispersion estimator:

<table>
<thead>
<tr>
<th>Quantile Estimator</th>
<th>Asymptotic Normality</th>
<th>Joint asymptotics (with a measure of dispersion estimator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_n(p)$</td>
<td>(H1): $0 < f_X(q_X(p)) < \infty$</td>
<td>$(H1), \begin{cases} F_X \text{ twice diff.able in nbhd. of } q_X(p), \ F_X'' \text{ bd. in that neighbourhood,} \ F_X(q_X(p)) = p \end{cases}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure of Dispersion Estimator</th>
<th>Asymptotic Normality</th>
<th>Joint asymptotics (with a quantile estimator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\sigma}_n^2$</td>
<td>(H2): $\begin{cases} \mathbb{E}[X^4] < \infty, \ (X - \mu)^2 \text{ not constant} \end{cases}$</td>
<td>$(H2)$</td>
</tr>
<tr>
<td>$\hat{\theta}_n$</td>
<td>(Q1): $\begin{cases} \mathbb{E}[X^2] < \infty, \ F_X \text{ contin. at } \mu \end{cases}$</td>
<td>$(Q1), (Q3): F_X \text{ Hölder-contin at } \mu$</td>
</tr>
</tbody>
</table>
Conditions

Different conditions on X depending on the quantile estimator and the choice of measure of dispersion estimator:

<table>
<thead>
<tr>
<th>Quantile Estimator</th>
<th>Asymptotic Normality</th>
<th>Joint asymptotics (with a measure of dispersion estimator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_n(p)$</td>
<td>(H1): $0 < f_X(q_X(p)) < \infty$</td>
<td>(H1), F_X twice diff. able in nbhd. of $q_X(p)$, F_X'' bd. in that neighbourhood, $F_X(q_X(p)) = p$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure of Dispersion Estimator</th>
<th>Asymptotic Normality</th>
<th>Joint asymptotics (with a quantile estimator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\sigma}_n^2$</td>
<td>(H2): $\mathbb{E}[X^4] < \infty$, $(X - \mu)^2$ not constant</td>
<td>(H2)</td>
</tr>
<tr>
<td>$\hat{\theta}_n$</td>
<td>(Q1): $\mathbb{E}[X^2] < \infty$, F_X contin. at μ</td>
<td>(Q1), (Q3): F_X Hölder-contin at μ</td>
</tr>
</tbody>
</table>
A second factor: the clustering and return-to-the mean of volatility

- Use the **simplest version** of GARCH models, GARCH(1,1), to isolate the effect of clustering of volatility and its return to the mean

\[\sigma^2_t = \omega + \alpha r^2_{t-1} + \beta \sigma^2_{t-1} \quad \text{with} \quad r_{t+1} = \sigma_t \epsilon_t \]

where the innovation \(\epsilon_t \in \mathcal{N}(0,1) \) or Student, to study the tail effect

- Fit the parameters \(\omega, \alpha, \beta \) to each full sample of the 11 indices, using a **robust optimization method** (Zumbach 2000) to obtain a **stationary solution** for the GARCH (s.t. \(\alpha + \beta < 1 \)): the annualized volatility reproduces quite well the realized one (slightly higher)

Theo: Bivariate FCLT. Consider an augmented GARCH\((p, q)\) process (Duan, 97). Introduce the vector \(T_{n,r}(X) = \left(\begin{array}{c} q_n(p) - q_x(p) \\ \hat{m}(X, n, r) - m(X, r) \end{array} \right), \ r \in \mathbb{Z}. \)

Then, under some conditions, we have that, for \(t \in [0, 1], \)

\[\sqrt{n} T_{[nt], r}(X) \overset{D}{\underset{t \to 1}[0,1]}{\to} \mathbf{W}_{\Gamma(r)}(t) \quad \text{as} \quad n \to \infty, \]

where \(\mathbf{W}_{\Gamma(r)}(t), t \in [0, 1] \) is the 2-dimensional Brownian motion with \(\text{Cov}(\mathbf{W}_{\Gamma(r)}(t), \mathbf{W}_{\Gamma(r)}(s)) = \min(s, t) \Gamma(r) \), with \(\Gamma(r) \) cov matrix well defined.
A second factor: the clustering and return-to-the mean of volatility

- Use the **simplest version** of GARCH models, GARCH(1,1), to isolate the effect of clustering of volatility and its return to the mean

\[\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{with} \quad r_{t+1} = \sigma_t \epsilon_t \]

where the innovation \(\epsilon_t \in \mathcal{N}(0, 1) \) or Student, to study the tail effect

- Fit the parameters \(\omega, \alpha, \beta \) to each full sample of the 11 indices, using a **robust optimization method** (Zumbach 2000) to obtain a **stationary solution** for the GARCH (s.t. \(\alpha + \beta < 1 \)): the annualized volatility reproduces quite well the realized one (slightly higher)

- **Theo: Bivariate FCLT.** Consider an augmented GARCH\((p, q)\) process (Duan, 97). Introduce the vector \(T_{n,r}(X) = \left(q_n(p) - q_x(p), \hat{m}(X, n, r) - m(X, r) \right) \), \(r \in \mathbb{Z} \).

Then, under some conditions, we have that, for \(t \in [0, 1] \),

\[\sqrt{n} T_{nt,r}(X) \overset{D_2[0,1]}{\to} \mathbf{W}_{\Gamma(r)}(t) \quad \text{as} \quad n \to \infty, \]

where \(\mathbf{W}_{\Gamma(r)}(t), t \in [0, 1] \) is the 2-dimensional Brownian motion with \(\text{Cov}(\mathbf{W}_{\Gamma(r)}(t), \mathbf{W}_{\Gamma(r)}(s)) = \min(s, t) \Gamma^{(r)} \), with \(\Gamma^{(r)} \) cov matrix well defined.
A second factor: the clustering and return-to-the mean of volatility

- Use the **simplest version** of GARCH models, GARCH(1,1), to isolate the effect of clustering of volatility and its return to the mean

\[\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{with } r_{t+1} = \sigma_t \epsilon_t \]

where the innovation \(\epsilon_t \in \mathcal{N}(0,1) \) or Student, to study the tail effect

- Fit the parameters \(\omega, \alpha, \beta \) to each full sample of the 11 indices, using a **robust optimization method** (Zumbach 2000) to obtain a **stationary solution** for the GARCH (s.t. \(\alpha + \beta < 1 \)): the annualized volatility reproduces quite well the realized one (slightly higher)

Theo: **Bivariate FCLT.** Consider an augmented GARCH\((p, q)\) process (Duan, 97). Introduce the vector \(T_{n,r}(X) = \left(q_n(p) - q_x(p), \hat{m}(X, n, r) - m(X, r) \right) \), \(r \in \mathbb{Z} \).

Then, under some conditions, we have that, for \(t \in [0, 1] \),

\[\sqrt{n} T_{[nt],r}(X) \xrightarrow{D_2[0,1]} \mathbf{W}_{\Gamma(r)}(t) \quad \text{as } n \to \infty, \]

where \(\mathbf{W}_{\Gamma(r)}(t), t \in [0, 1] \) is the 2-dimensional Brownian motion with \(\text{Cov}(\mathbf{W}_{\Gamma(r)}(t), \mathbf{W}_{\Gamma(r)}(s)) = \min(s, t) \Gamma(r) \), with \(\Gamma(r) \) cov matrix well defined.
A second factor: the clustering and return-to-the mean of volatility

- Use the **simplest version** of GARCH models, GARCH(1,1), to isolate the effect of clustering of volatility and its return to the mean

\[
\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \quad \text{with} \quad r_{t+1} = \sigma_t \epsilon_t
\]

where the innovation \(\epsilon_t \in \mathcal{N}(0, 1) \) or Student, to study the tail effect

- Fit the parameters \(\omega, \alpha, \beta \) to each full sample of the 11 indices, using a **robust optimization method** (Zumbach 2000) to obtain a **stationary solution** for the GARCH (s.t. \(\alpha + \beta < 1 \)): the annualized volatility reproduces quite well the realized one (slightly higher)

Theo: Bivariate FCLT. Consider an augmented GARCH\((p, q)\) process (Duan, 97). Introduce the vector \(T_{n,r}(X) = \left(q_n(p) - qX(p), m(X, n, r) - m(X, r) \right) \), \(r \in \mathbb{Z} \).

Then, under some conditions, we have that, for \(t \in [0, 1] \),

\[
\sqrt{n} T_{[nt],r}(X) \xrightarrow{D_2[0,1]} W_{\Gamma(r)}(t) \quad \text{as} \quad n \to \infty,
\]

where \(W_{\Gamma(r)}(t), t \in [0, 1] \) is the 2-dimensional Brownian motion with \(\text{Cov}(W_{\Gamma(r)}(t), W_{\Gamma(r)}(s)) = \min(s, t)\Gamma(r) \), with \(\Gamma(r) \) cov matrix well defined.
Comparing results

USA: S&P 500

USA: S&P 500 GARCH

USA: S&P 500 iid
Comparing results

EXPLAIN

Model: Data (S&P500) GARCH iid (Gaussian)

Correlation (log-ratios) -0.50 -0.63 -0.34
Comparing results

<table>
<thead>
<tr>
<th>Model</th>
<th>Data (S&P500)</th>
<th>GARCH</th>
<th>iid (Gaussian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (log-ratios)</td>
<td>-0.50</td>
<td>-0.63</td>
<td>-0.34</td>
</tr>
</tbody>
</table>
Conclusion

- We introduced a ‘dynamic generalization of VaR’ - the SQP

- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them.

- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically:
 1. The way risk is measured, via iid model;
 2. Clustering effect of the volatility, via GARCH models.

- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation.

- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation.
Conclusion

- We introduced a 'dynamic generalization of VaR’ - the SQP
- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them.
- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically:
 1. the way risk is measured, via iid model;
 2. clustering effect of the volatility, via GARCH models.
- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation.
- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation.
Conclusion

- We introduced a 'dynamic generalization of VaR' - the SQP

- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them

- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically
 (i) the way risk is measured, via iid model;
 (ii) clustering effect of the volatility, via GARCH models

- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation

- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation
Conclusion

- We introduced a 'dynamic generalization of VaR' - the SQP

- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them.

- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically:
 1. the way risk is measured, via iid model;
 2. clustering effect of the volatility, via GARCH models.

- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation.

- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation.
Conclusion

- We introduced a 'dynamic generalization of VaR’ - the SQP

- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them.

- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically:

 (i) the way risk is measured, via iid model;

 (ii) clustering effect of the volatility, via GARCH models

- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation.

- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation.
Conclusion

- We introduced a ’dynamic generalization of VaR’ - the SQP

- Pro-cyclicality of the SQP confirmed and quantified (by conditioning to realized volatility): During high-volatility periods, those risk measures overestimate the risks for the following years, whereas during low-volatility periods, they underestimate them.

- Identification of 2 factors explaining pro-cyclicality of risk measurement, with a negative dependence between the realized volatility and the log SQP-ratios shown empirically and theoretically:

 (i) the way risk is measured, via iid model;
 (ii) clustering effect of the volatility, via GARCH models.

- Choice of dispersion measure matters: Think about MAD as a good alternative to Standard Deviation.

- Ongoing work: the design of the SQP (the random measure μ) with the proper dynamical behavior as a good basis for anti-cyclical regulation.
Based on 3 preprints (2 submitted):

- **M. Bräutigam and Kratz, M.** (2019). Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH\((p, q)\) processes. (soon available)